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Abstract

We study infinite stochastic games played by two-players over a fi-
nite state space, with objectives specified by sets of infinite traces. The
games are concurrent (players make moves simultaneously and inde-
pendently), stochastic (the next state is determined by a probability
distribution that depends on the current state and chosen moves of
the players) and infinite (proceeds for infinite number of rounds). The
analysis of concurrent stochastic games can be classified into: quantita-
tive analysis, analyzing the optimum value of the game and ε-optimal
strategies that ensure values within ε of the optimum value; and qual-
itative analysis, analyzing the set of states with optimum value 1 and
ε-optimal strategies for the states with optimum value 1. We consider
concurrent games with tail objectives, i.e., objectives that are inde-
pendent of the finite-prefix of traces, and show that the class of tail
objectives are strictly richer than the ω-regular objectives. We develop
new proof techniques to extend several properties of concurrent games
with ω-regular objectives to concurrent games with tail objectives. We
prove the positive limit-one property for tail objectives, that states for
all concurrent games if the optimum value for a player is positive for
a tail objective Φ at some state, then there is a state where the op-
timum value is 1 for objective Φ for the player. We show that the
strategies for quantitative winning can be constructed from witnesses
of strategies for qualitative winning. The results establish relationship
between the quantitative and qualitative analysis of concurrent games

∗This research was supported in part by the ONR grant N00014-02-1-0671, the AFOSR
MURI grant F49620-00-1-0327, and the NSF ITR grant CCR-0225610.
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with tail objectives. We also show that the optimum values of zero-
sum (strictly conflicting objectives) games with tail objectives can be
related to equilibrium values of nonzero-sum (not strictly conflicting
objectives) games with simpler reachability objectives. A consequence
of our analysis presents a polytime reduction of the quantitative anal-
ysis of tail objectives to the qualitative analysis for the sub-class of
one-player stochastic games (Markov decision processes).

1 Introduction

Stochastic games. Non-cooperative games provide a natural framework to
model interactions between agents [15, 16]. A wide class of games progress
over time and in stateful manner, and the current game depends on the his-
tory of interactions. Infinite stochastic games [18, 9] are a natural model for
such dynamic games. A stochastic game is played over a finite state space
and is played in rounds. In concurrent games, in each round, each player
chooses an action from a finite set of available actions, simultaneously and
independently of the other player. The game proceeds to a new state ac-
cording to a probabilistic transition relation (stochastic transition matrix)
based on the current state and the joint actions of the players. Concurrent
games subsume the simpler class of turn-based games, where at every state
at most one player can choose between multiple actions; and Markov deci-
sion processes (MDPs), where only one player can choose between multiple
actions at every state. In verification and control of finite state reactive sys-
tems such games proceed for infinite rounds, generating a infinite sequence
of states, called the outcome of the game. The players receive a payoff based
on a payoff function that maps every outcome to a real number.

Objectives. Payoffs are generally Borel measurable functions [13]. For
example, the payoff set for each player is a Borel set Bi in the Cantor
topology on Sω (where S is the set of states), and player i gets payoff 1 if
the outcome of the game is a member of Bi, and 0 otherwise. In verification,
payoff functions are usually index sets of ω-regular languages. The ω-regular
languages generalizes the classical regular languages to infinite strings, they
occur in low levels of the Borel hierarchy (they are in Σ3∩Π3), and they form
a robust and expressive language for determining payoffs for commonly used
specifications [12]. The simplest ω-regular objectives correspond to safety
(“closed sets”) and reachability (“open sets”) objectives.

Zero-sum games, determinacy and nonzero-sum games. Games may
be zero-sum, where two players have directly conflicting objectives and the
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payoff of one player is one minus the payoff of the other, or nonzero-sum,
where each player has a prescribed payoff function based on the outcome
of the game. The fundamental question for games is the existence of equi-
librium values. For zero-sum games, this involves showing a determinacy
theorem that states that the expected optimum value obtained by player 1
is exactly one minus the expected optimum value obtained by player 2. For
one-step zero-sum games, this is von Neumann’s minmax theorem [21]. For
infinite games, the existence of such equilibria is not obvious, in fact, by
using the axiom of choice, one can construct games for which determinacy
does not hold. However, a remarkable result by Martin [13] shows that all
stochastic zero-sum games with Borel payoffs are determined. For nonzero-
sum games, the fundamental equilibrium concept is a Nash equilibrium [10],
that is, a strategy profile such that no player can gain by deviating from
the profile, assuming the other player continue playing the strategy in the
profile.

Qualitative and quantitative analysis. The analysis of concurrent zero-
sum games can be broadly classified into

• quantitative analysis that involves analysis of the optimum values of
the games, and ε-optimal strategies that ensure values within ε of the
optimum value; and

• qualitative analysis that involves the simpler analysis of the set of
states where the optimum value is 1, and ε-limit-sure winning strate-
gies that ensure satisfying the objective with value at least 1− ε.

In general qualitative analysis of concurrent games is simpler as compared
to quantitative analysis, as it only considers the case when the value is 1.
Optimum values in concurrent games can be irrational even for reachability
and safety objectives (with all rational transition probabilities) and hence
quantitative analysis requires more involved analysis.

Properties of concurrent games. The result of Martin [13] establishes
the determinacy of zero-sum concurrent games for all Borel objectives. The
determinacy result sets forth the problem of study and closer understanding
of properties and behaviors of concurrent games with different class of ob-
jectives. Several interesting questions related to concurrent games are: (1)
relationship of qualitative and quantitative analysis; (2) characterizing ε-
optimal strategies and ε-limit-sure winning strategies and their relationship;
(3) relationship of zero-sum and nonzero-sum games. The results of [6, 7, 1]
exhibited several interesting properties for concurrent games with ω-regular
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objectives specified as parity objectives. The result of [6] showed the posi-
tive limit-one property, that states if there is a state with positive optimum
value, then there is a state with optimum value 1, for concurrent games with
parity objectives. The positive limit-one property and establishing the rela-
tion of qualitative and quantitative analysis were key to develop algorithms
and improved complexity bound for quantitative analysis concurrent games
with parity objectives [1]. The above properties can often be the basic in-
gredients for the computational complexity analysis of quantitative analysis
of concurrent games.

Outline of results. In this work, we consider tail objectives, the objec-
tives that do not depend on any finite-prefix of the traces. Tail objectives
subsume canonical ω-regular objectives such as parity objectives and Müller
objectives, and we show that there exist tail objectives that cannot be ex-
pressed as ω-regular objectives. Hence tail objectives are a strictly richer
class of objectives than ω-regular objectives. Our result characterizes sev-
eral properties of concurrent games with tail objectives. The results are as
follows:

1. We show the positive limit-one property for concurrent games with
tail-objectives. Our result thus extend the result of [6] from parity
objectives objectives to a richer class of objective that lie in the higher
levels of Borel hierarchy. The result of [6] follows from a complementa-
tion argument of quantitative µ-calculus formula. Our proof technique
is completely different: it uses a novel strategy construction procedure
and a convergence result from martingale theory. It may be noted
that the positive limit-one property for concurrent games with Müller
objectives follows from the positive limit-one property for parity objec-
tives and the reduction of Müller objectives to parity objectives [20].
Since Müller objectives are tail objectives, our result presents a direct
proof for the positive limit-one property for concurrent games with
Müller objectives.

2. We establish connection between the complexity of strategies for quan-
titative winning (ε-optimality) and qualitative winning (ε-limit-sure
winning) for tail objectives. We show that witnesses for strategies
for quantitative winning can be constructed by composing witnesses
of strategies that are qualitative winning in sub-games, and respect
certain local conditions.

3. We relate the optimum values of zero-sum games with tail-objectives
with Nash-equilibrium values of non-zero sum games with reachabil-
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ity objectives. This establishes a relationship between the values of
concurrent games with complicated tail objectives and Nash equilib-
rium of nonzero-sum games with simpler objectives. Our result also
presents a polytime reduction of quantitative analysis of tail objectives
to qualitative analysis for the special case of MDPs. The above result
was previously known for the sub-class of ω-regular objectives [4, 5, 2].
The proof techniques of [4, 5, 2] uses different analysis of the structure
of MDPs and is completely different from our proof techniques.

The properties we prove makes it likely that qualitative analysis for concur-
rent games with tail objectives can be extended to quantitative analysis. The
complexity for qualitative analysis of concurrent games and its sub-classes
with tail objectives is an open problem.

2 Definitions

Notation. For a countable set A, a probability distribution on A is a func-
tion δ : A 7→ [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability

distributions on A by D(A). Given a distribution δ ∈ D(A), we denote by
Supp(δ) = {x ∈ A | δ(x) > 0} the support of δ.

Definition 1 (Concurrent Games) A (two-player) concurrent game
structure G = 〈S,Moves ,Mv1,Mv2, δ〉 consists of the following components:

• A finite state space S.

• A finite set Moves of moves.

• Two move assignments Mv1,Mv2 : S 7→ 2Moves \ ∅. For i ∈ {1, 2},
assignment Mv i associates with each state s ∈ S the non-empty set
Mv i(s) ⊆ Moves of moves available to player i at state s.

• A probabilistic transition function δ : S × Moves × Moves → D(S),
that gives the probability δ(s, a1, a2)(t) of a transition from s to t when
player 1 plays a1 and player 2 plays move a2, for all s, t ∈ S and
a1 ∈ Mv1(s), a2 ∈ Mv2(s).

An important special class of concurrent games are Markov decision pro-
cesses (MDPs). In MDPs at every state s, |Mv2(s)| = 1, i.e., the set of
available moves for player 2 is singleton at every state.

At every state s ∈ S, player 1 chooses a move a1 ∈ Mv1(s), and simul-
taneously and independently player 2 chooses a move a2 ∈ Mv2(s). The
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game then proceeds to the successor state t with probability δ(s, a1, a2)(t),
for all t ∈ S. A state s is called an absorbing state if for all a1 ∈ Mv1(s)
and a2 ∈ Mv2(s) we have δ(s, a1, a2)(s) = 1. In other words, at s for all
choice of moves of the players the next state is always s. We assume that
the players act non-cooperatively, i.e., each player chooses her strategy in-
dependently and secretly from the other player, and is only interested in
maximizing her own reward. For all states s ∈ S and moves a1 ∈ Mv1(s)
and a2 ∈ Mv2(s), we indicate by Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set
of possible successors of s when moves a1, a2 are selected.

A path or a play ω of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of
states in S such that for all k ≥ 0, there are moves ak

1 ∈ Mv1(sk) and
ak

2 ∈ Mv2(sk) with δ(sk, a
k
1 , a

k
2)(sk+1) > 0. We denote by Ω the set of all

paths and by Ωs the set of all paths ω = 〈s0, s1, s2, . . .〉 such that s0 = s,
i.e., the set of plays starting from state s.

Randomized strategies. A selector ξ for player i ∈ { 1, 2 } is a function
ξ : S 7→ D(Moves) such that for all s ∈ S and a ∈ Moves, if ξ(s)(a) > 0, then
a ∈ Mv i(s). We denote by Λi the set of all selectors for player i ∈ {1, 2}. A
selector ξ is pure if for every s ∈ S there is a ∈ Moves such that ξ(s)(a) = 1;
we denote by ΛP

i ⊆ Λi the set of pure selectors for player i. A strategy for
player 1 is a function τ : S+ → Λ1 associates with every finite non-empty
sequence of states, representing the history of the play so far, a selector.
Similarly we define strategies π for player 2. A strategy τ for player i is pure
if it yields only pure selectors, that is, is of type S+ → ΛP

i . A memoryless
strategy is independent of the history of the play and depends only on the
current state. Memoryless strategies coincide with selectors, and we often
write τ for the selector corresponding to a memoryless strategy τ . A strategy
is pure memoryless if it is pure and memoryless. We denote by ΓP ,ΓM ,ΓPM

the family of pure, memoryless and pure memoryless strategies for player 1
respectively. Analogously we define the families of strategies for player 2.
We denote by Γ and Π the set of all strategies for player 1 and player 2,
respectively.

Once the starting state s and the strategies τ and π for the two players
have been chosen, the game is reduced to an ordinary stochastic process.
Hence, the probabilities of events are uniquely defined, where an event A ⊆
Ωs is a measurable set of paths. For an event A ⊆ Ωs, we denote by Prτ,π

s (A)
the probability that a path belongs to A when the game starts from s and
the players follows the strategies τ and π. For i ≥ 0, we also denote by
Θi : Ωs → S the random variable denoting the i-th state along a path.
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Objectives. We specify objectives for the players by providing the set of
winning plays Φ ⊆ Ω for each player. Given an objective Φ we denote by Φ =
Ω\Φ, the complementary objective of Φ. A concurrent game with objective
Φ1 for player 1 and Φ2 for player 2 is zero-sum if Φ2 = Φ1 [17, 9]. A general
class of objectives are the Borel objectives [11]. A Borel objective Φ ⊆ Sω is
a Borel set in the Cantor topology on Sω. In this paper we consider ω-regular
objectives [20], which lie in the first 21/2 levels of the Borel hierarchy (i.e., in
the intersection of Σ3 and Π3) and tail objectives which is a strict superset
of ω-regular objectives. The ω-regular objectives, and subclasses thereof,
and tail objectives are defined below. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we
define Inf(ω) = { s ∈ S | sk = s for infinitely many k ≥ 0 } to be the set of
states that occur infinitely often in ω.

• Reachability and safety objectives. Given a set T ⊆ S of “tar-
get” states, the reachability objective requires that some state of T
be visited. The set of winning plays is thus Reach(T ) = { ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ T for some k ≥ 0 }. Given a set F ⊆ S,
the safety objective requires that only states of F be visited. Thus,
the set of winning plays is Safe(F ) = { ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
F for all k ≥ 0 }.

• Büchi and coBüchi objectives. Given a set B ⊆ S of “Büchi” states, the
Büchi objective requires that B is visited infinitely often. Formally, the
set of winning plays is Büchi(B) = { ω ∈ Ω | Inf(ω) ∩B 6= ∅ }. Given
C ⊆ S, the coBüchi objective requires that all states visited infinitely
often are in C. Formally, the set of winning plays is coBüchi(C) =
{ ω ∈ Ω | Inf(ω) ⊆ C }.

• Parity objective. For c, d ∈ N, we let [c..d] = { c, c + 1, . . . , d }. Let
p : S 7→ [0..d] be a function that assigns a priority p(s) to every state
s ∈ S, where d ∈ N. The Even parity objective is defined as Parity(p) =
{ ω ∈ Ω | min

(
p(Inf(ω))

)
is even }, and the Odd parity objective as

coParity(p) = { ω ∈ Ω | min
(
p(Inf(ω))

)
is odd }. Informally we say

that a path ω satisfies the parity objective, Parity(p), if ω ∈ Parity(p).

• Muller objective. Given a set M⊆ 2S , the Müller objective is defined
as Müller(M) = { ω ∈ Ω | Inf(ω) ∈M }.

• Tail objective. Informally the class of tail objectives are the class of
objectives that are independent of all finite prefixes. An objective Φ
is a tail objective, if the following condition hold: a path ω ∈ Φ if
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and only if for all i ≥ 0, ωi ∈ Φ, where ωi denotes the path ω with
the prefix of length i deleted. Formally, let Gi = σ(Θi,Θi+1, . . .) be
the σ-field generated by the random-variables Θi,Θi+1, . . .. The tail
σ-field T is defined as T =

⋂
i≥0 Gi. An objective Φ is a tail objective

if and only if Φ belongs to the tail σ-field T , i.e., the tail objectives
are indicator functions of events A ∈ T .

The Müller and parity objectives are canonical forms to represent ω-
regular objectives [14, 19]. Observe that Müller and parity objectives are
tail objectives. Note that for a priority function p : V → { 0, 1 }, an even
parity objective Parity(p) is equivalent to the Büchi objective Büchi(p−1(0)),
i.e., the Büchi set consists of the states with priority 0. Büchi and coBüchi
objectives are special cases of parity objectives and hence tail objectives.
Reachability objectives are not necessarily tail objectives, but for a set T ⊆ S
of states, if every state s ∈ T is an absorbing state, then the objective
Reach(T ) equivalent to Büchi(T ) and hence is a tail objective. It may be
noted that since σ-fields are closed under complementation the class of tail
objectives are closed under complementation. We give an example to show
that the class of tail objectives are richer than ω-regular objectives.

Example 1 Let r be a reward function that maps every state s to a real-
valued reward r(s), i.e., r : S → R. For a constant c ∈ N consider the
objective Φc = 1lim supc

defined as follows:

Φc = { ω ∈ Ω | ω = 〈s1, s2, s3, . . .〉, lim sup
n→∞

1
n

n∑
i=1

r(si) ≥ c }.

Intuitively, Φc accepts the set of paths such that the “long-run” average of
the rewards in the path is at least the constant c. The lim sup condition lie
in the third-level of the Borel-hierarchy (i.e., in Π3 and Π3-complete) and
cannot be expressed as an ω-regular objective. Hence the class ∪c∈N1lim supc

of objectives cannot be expressed as ω-regular objectives. It may be noted
that the “long-run” average of a path is independent of all finite-prefixes of
the path. Formally, the class ∪c∈N1lim supc

of objectives are tail objectives.
Since lim supc are Π3-complete objectives, it follows that tail objectives lie
in higher levels of Borel hierarchy than ω-regular objectives.

Values. The probability that a path satisfies an objective Φ starting from
state s ∈ S, given strategies τ, π for the players is Prτ,π

s (Φ). Given a state
s ∈ S and an objective, Φ, we are interested in the maximal probability
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with which player 1 can ensure that Φ and player 2 can ensure that Φ holds
from s. We call such probability the value of the game G at s for player
i ∈ { 1, 2 }. The value for player 1 and player 2 are given by the function
〈〈1〉〉val (Φ) : S 7→ [0, 1] and 〈〈2〉〉val (Φ) : S 7→ [0, 1], defined for all s ∈ S by

〈〈1〉〉val (Φ)(s) = sup
τ∈Γ

inf
π∈Π

Prτ,π
s (Φ)

〈〈2〉〉val (Φ)(s) = sup
π∈Π

inf
τ∈Γ

Prτ,π
s (Φ).

Note that the objectives of the player are complementary and hence we
have a zero-sum game. Concurrent games satisfy a quantitative version of
determinacy [13], stating that for all Borel-objectives Φ, and all s ∈ S, we
have

〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Φ)(s) = 1.

A strategy τ for player 1 is optimal for objective Φ if for all s ∈ S we have

inf
π∈Π

Prτ,π
s (Φ) = 〈〈1〉〉val (Φ)(s).

For ε > 0, a strategy τ for player 1 is ε-optimal for objective Φ if for all
s ∈ S we have

inf
π∈Π

Prτ,π
s (Φ) ≥ 〈〈1〉〉val (Φ)(s)− ε.

We define optimal and ε-optimal strategies for player 2 symmetrically. For
ε > 0, an objective Φ for player 1 and Φ for player 2, we denote by Γε(Φ) and
Πε(Φ) the set of ε-optimal strategies for player 1 and player 2, respectively.
Note that the quantitative determinacy of concurrent games is equivalent to
the existence of ε-optimal strategies for objective Φ for player 1 and Φ for
player 2, for all ε > 0, at all states s ∈ S, i.e., for all ε > 0, Γε(Φ) 6= ∅ and
Πε(Φ) 6= ∅.

We refer to the analysis of limit-sure winning states (the set of states s
such that 〈〈1〉〉val (Φ)(s) = 1) and ε-limit-sure winning strategies (ε-optimal
strategies for the limit-sure winning states) as the qualitative analysis of ob-
jective Φ. We refer to the analysis of the values and the ε-optimal strategies
as the quantitative analysis of objective Φ.

3 Positive Limit-one Property

The positive limit-one property for concurrent games for a class C of objec-
tives states that for all objectives Φ ∈ C, for all concurrent games G, if there
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is a state s such that the value for player 1 is positive at s for objective
Φ, then there is a state s′ where the value for player 1 is 1 for objective
Φ. The property means if a player can win with positive value from some
state, then from some state she can win with value 1. The positive limit-one
property was proved for parity objectives in [6] and has been one of the key
properties used in the algorithmic analysis of concurrent games with par-
ity objectives [1]. In this section we prove the positive limit-one property
for concurrent games with tail-objectives, and thereby extend the positive
limit-one property from parity objectives to a richer class of objectives that
subsume several canonical ω-regular objectives. Our proof uses a result from
martingale theory and a novel strategy construction, whereas the proof for
the sub-class of parity objectives [6] followed from complementation argu-
ments of quantitative µ-calculus formula.

Notation. In the setting of concurrent games the natural filtration sequence
(Fn) for the stochastic process under any pair of strategies is defined as

Fn = σ(Θ1,Θ2, . . . ,Θn)

i.e., the σ-field generated by the random-variables Θ1,Θ2, . . . ,Θn.

Lemma 1 (Lévy’s 0-1 law) Suppose Hn ↑ H∞, i.e.,Hn is a sequence of
increasing σ-fields and H∞ = σ(∪nHn). For all events A ∈ H∞ we have

E(1A | Hn) = Pr(1A | Hn) → 1A almost-surely, (i.e., with probability 1),

where 1A is the indicator function of event A.

The proof of the lemma is available in Durrett (page 262—263) [8]. An
immediate consequence of Lemma 1 in the setting of concurrent games is
the following Lemma.

Lemma 2 (0-1 law in concurrent games) For all events A ∈ F∞ =
σ(∪nFn), for all strategies (τ, π) ∈ Γ×Π, for all states s, we have

Prτ,π
s (1A | Fn) → 1A almost-surely,

where 1A is the indicator function of event A.

Intuitively, the lemma means that the probability Prτ,π
s (1A | Fn) converges

almost-surely (i.e., with probability 1) to 0 or 1 (since indicator functions
take values in the range { 0, 1 }). Note that the tail σ-field T is a subset of
F∞, i.e., T ⊆ F∞, and hence the result of Lemma 2 holds for all A ∈ T .
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Theorem 1 (Positive limit-one property) For all concurrent games,
for all tail objectives Φ, if there exists a state s such that 〈〈1〉〉val (Φ)(s) > 0,
then there exists a state s′ such that 〈〈1〉〉val (Φ)(s′) = 1.

Proof. Assume towards contradiction that there exists a state s such
that 〈〈1〉〉val (Φ)(s) > 0, but for all states s′ we have 〈〈1〉〉val (Φ)(s′) < 1.
Since 〈〈2〉〉val (Φ)(s′) = 1 − 〈〈1〉〉val (Φ)(s′), we have 〈〈2〉〉val (Φ)(s′) > 0,
for all states s′. Fix η such that 0 < η = mins∈S〈〈2〉〉val (Φ)(s). Let
0 < 2ε < min{ η, 〈〈1〉〉val (Φ)(s) }. Fix an ε-optimal strategy τε for player 1.
We define a sequence of strategies πi for player 2: let π0 be an ε-optimal
strategy for player 2. The strategy πi+1 is defined as follows. For a history
〈s1, s2, . . . , sk〉 we have

πi+1(〈s1, s2, . . . , sk〉) =


πi(〈s1, s2, . . . , sk〉) if Prτε,πi

s (Φ | 〈s1, s2, . . . , sk〉) ≥ ε

π̃i(〈s1, s2, s3, . . . , sk〉) if Prτε,πi
s (Φ | 〈s1, s2, . . . , sk〉) < ε

where π̃i is an ε-optimal strategy
from state sk

Intuitively, the strategy πi+i is as follows: for a history 〈s1, s2, . . . , sk〉 if
the strategy πi ensures value greater than ε, then πi+1 follows strategy
πi; else it switches to an ε-optimal strategy π̃i from state sk. Since π̃i is
an ε-optimal strategy from state sk, 〈〈2〉〉val (Φ)(s) > 2ε for all states s,
and Φ is a tail objective that is independent of all finite-prefixes we have
Prτε,πi+1

s (Φ) ≥ Prτε,πi
s (Φ). Let

Prτε,π∞
s (Φ) = lim

i→∞
Prτε,πi

s (Φ);

(the limit exists since it is a non-decreasing sequence of values bounded
by 1) where π∞ = limi→∞ πi. Since Φ is a tail objective (i.e., Φ ∈
limn→∞ σ(Θn,Θn+1, . . . , )), it follows that Prτε,π∞

s (Φ) ≥ Prτε,πi
s (Φ), for all

i ≥ 0. Again by the construction of the sequence of strategies we have

Prτε,π∞
s (Φ | 〈s1, s2, s3, . . . , sn〉) ≥ ε,

for all histories 〈s1, s2, s3, . . . , sn〉. It follows from Lemma 2 that Prτε,π∞
s (Φ |

Fn) → { 0, 1 } almost-surely. Hence we conclude that Prτε,π∞
s (Φ | Fn) → 1

almost-surely, i.e., Prτε,π∞
s (Φ | Fn) → 0 almost-surely. Since τε is an ε-

optimal strategy, we get that 〈〈1〉〉val (Φ)(s) < ε. But by assumption, 2ε <
〈〈1〉〉val (Φ)(s) and hence we have a contradiction. Thus the desired result is
established.
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4 Strategy Characterization for Tail Objectives

In this section we show that in concurrent games with tail objectives, wit-
nesses for ε-optimal strategies can be constructed using witnesses for ε-limit-
sure winning strategies of sub-games, that respect certain local optimality
conditions. The result characterizes the strategy complexity for quantita-
tive optimality for tail objectives in terms of qualitative optimality and local
optimality.

We relate the values of zero-sum games with tail-objectives with the
Nash equilibrium values of nonzero-sum games with reachability objectives.
The result shows that the values of a zero-sum game with complicated ob-
jectives can be related to equilibrium values of a nonzero-sum game with
simpler objectives. We also show that for MDPs the value function for a
tail objective Φ can be computed by computing the maximal probability of
reaching the set of states with value 1. As an immediate consequence of the
above analysis, we obtain a polytime reduction of the quantitative analysis
of MDPs with tail objectives, to the qualitative analysis.

Local optimality. A key notion that will play an important role in the
construction of ε-optimal strategies is the notion of local optimality . Infor-
mally, a selector function ξ is locally optimal if it is optimal in the one-step
matrix game where each state is assigned a reward value 〈〈1〉〉val (Φ)(s). A lo-
cally optimal strategy is a strategy that consists of locally optimal selectors.
A locally ε-optimal strategy is a strategy that has a total deviation from
locally-optimal selectors of at most ε. We note that local ε-optimality and
ε-optimality are very different notions. Local ε-optimality consists in the
approximation of a local selector; a locally ε-optimal strategy provides no
guarantee of yielding a probability of winning the game close to the optimal
one.

Definition 2 (Locally ε-optimal selectors and strategies) A selector
ξ is locally optimal for objective Φ if for all s ∈ S and a2 ∈ Mvs(s) we have

E[〈〈1〉〉val (Φ)(Θ1) | s, ξ(s), a2] ≥ 〈〈1〉〉val (Φ)(s).

We denote by Λ`(Φ) the set of locally-optimal selectors for objective Φ. A
strategy τ is locally optimal for objective Φ if for every history 〈s0, s1, . . . , sk〉
we have τ(〈s0, s1, . . . , sk〉) ∈ Λ`(Φ), i.e., player 1 plays a locally optimal
selector at every stage of the play. We denote by Γ`(Φ) the set of locally
optimal strategies for objective Φ. A strategy τε is locally ε-optimal for
objective Φ if for every strategy π ∈ Π, for all k ≥ 1, for all states s we have

〈〈1〉〉val (Φ)(s)− Eτ,π
s [〈〈1〉〉val (Φ)(Θk)] ≤ ε.
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Observe that a strategy that at each round i chooses a locally optimal selector
with probability at least (1−εi), with

∑∞
i=0 εi ≤ ε, is a locally ε-optimal strat-

egy. We denote by Γ`
ε(Φ) the set of locally ε-optimal strategies for objective

Φ.

We first show that for all tail objectives, for all ε > 0, there exist strategies
that are ε-optimal and ε-locally optimal as well.

Lemma 3 For all tail objectives Φ, for all ε > 0,

1. Γ ε
2
(Φ) ⊆ Γ`

ε(Φ).

2. Γε(Φ) ∩ Γ`
ε(Φ) 6= ∅.

Proof. For ε > 0, fix an ε
2 -optimal strategy τ for player 1. By definition τ

is an ε-optimal strategy as well. We argue that τ ∈ Γ`
ε(Φ). Assume towards

contradiction that τ 6∈ Γ`
ε(Φ), i.e., there exists a player 2 strategy π, a state

s, and k such that

〈〈1〉〉val (Φ)(s)− Eτ,π
s [〈〈1〉〉val (Φ)(Θk)] ≥ ε.

Fix a strategy π∗ = (π + π̃) for player 2 as follows: play π for k steps, then
switch to an ε

4 -optimal strategy π̃. Formally for a history 〈s1, s2, . . . , sn〉 we
have

π∗(〈s1, s2, . . . , sn〉) =


π(〈s1, s2, . . . , sn〉) if n ≤ k

π̃(〈sk+1, sk+2, . . . , sn〉) if n > k

where π̃ is an ε
4 -optimal strategy.

Since Φ is a tail objective we have

Prτ,π∗
s (Φ) ≤ Eτ,π

s [〈〈1〉〉val (Φ)(Θk)]+
ε

4
(since π̃ is an

ε

4
-optimal strategy).

Hence we have

Prτ,π∗
s (Φ) ≤ (〈〈1〉〉val (Φ)(s)−ε)+

ε

4
= 〈〈1〉〉val (Φ)(s)− 3ε

4
< 〈〈1〉〉val (Φ)(s)− ε

2
.

Since by assumption τ is an ε
2 -optimal strategy we have a contradiction.

This establishes the desired result.
A value class of the game is the set of all states where the game has a given
value.

Definition 3 (Value class) A value class VC(r) is the set of states s such
that the value for player 1 is r. Formally, VC(r) = {s | 〈〈1〉〉val (Φ)(s) = r}.
Note that for any game there are at most |S| many value classes. By VC<r

we denote the set {s | 〈〈1〉〉val (Φ)(s) < r} and similarly we use VC>r to
denote the set {s | 〈〈1〉〉val (Φ)(s) > r}.
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Reduction. We present a reduction from every value class VC(r) to a
concurrent game G̃r and then establish a few key properties of the game G̃r.
Let G = (S,Moves ,Mv1,Mv2, δ) be a concurrent game with a tail objective
Φ for player 1. For a state s we define the set of allowable actions as follows

OptSupp(s) = {γ ⊆ Mv1(s) | such that there is an optimal selector
ξ`
1 ∈ Λ`(Φ) and Supp(ξ`

1) = γ}.

Consider a value class VC(r) with 0 < r < 1. We construct a concurrent
game G̃r = (S̃r, M̃oves , M̃v1, M̃v2, δ̃) as follows:

1. State space. Given a state s let OptSupp(s) = {γ1, γ2, . . . , γk}. Then
we have

S̃r = { s̃ | s ∈ VC(r) } ∪ { w1, w2 }.

2. Moves assignment. M̃v1(s̃) = {1, 2, . . . , k} such that OptSupp(s) =
{γ1, γ2, . . . , γk} and M̃v2(s̃) = Mv2(s).

3. Transition function.

(a) The states w1 and w2 are absorbing states such that player 1 have
value 1 and 0 at state w1 and w2, respectively.

(b) Transition function at state s̃.

i. For any move a2 ∈ Mv2(s), if there is a move a1 ∈ γi such
that

∑
s′ 6∈VC(r) δ(s, a1, a2)(s′) > 0, then δ̃(s̃, i, a2)(w1) = 1.

The above transition specifies that if for a move a2 for
player 2 and a move a1 ∈ γi for player 1, if the game G
proceeds to a different value class with positive probability
then in G̃r the game proceeds to the state w1, which has
value 1 for player 1, with probability 1. Note, that since
a1 ∈ γi and γi ∈ OptSupp(s), if in G the game proceeds to a
different value class with positive probability it also proceeds
to VC>r with positive probability.

ii. For any move a2 ∈ Mv2(s), if for every move a1 ∈ γi we have∑
s′∈VC(r) δ(s, a1, a2)(s′) = 1, then

δ̃(s̃, i, a2)(s̃′) =
∑

a1∈γi

ξ`
1(a1) · δ(s, a1, a2)(s′)

where ξ`
1 is an locally optimal selector with Supp(ξ`

1) = γi.
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iii. For any move a1 ∈ (Mv1(s) \ γi), for any move a2 ∈ Mv2(s)
we have:

δ̃(s̃, a1, a2)(s̃′) = δ(s, a1, a2)(s′) for s′ ∈ VC(r);

δ̃(s̃, a1, a2)(w2) =
∑

s′ 6∈VC(r)

δ(s, a1, a2)(s′).

Notation. Let U>0 = { s̃ ∈ S̃r \ { w2 } | 〈〈2〉〉val (Φ)(s̃) > 0 } and U1 = { s̃ ∈
S̃r \ { w2 } | 〈〈2〉〉val (Φ)(s̃) = 1 }.
Strategy maps. We define two strategy maps; t̃ : Γ → Γ̃ that maps a
strategy in the game G to a strategy τ̃ = t̃(τ) in the game G̃r; and t : Π̃ → Π
that maps a strategy in the game G̃r to a strategy π = t(π̃) in the game G.
The strategy maps are defined as follows:

1. Given a strategy τ in the game G the strategy τ̃ = t̃(τ) in the game
G̃r is as follows:

• τ̃(s̃0, s̃1, . . . , s̃k)(j) =
∑

a∈γj
τ(s0, s1, . . . , sk)(a) where

γj = arg maxγ∈OptSupp(sk)

∑
a∈γ τ(s0, s1, . . . , sk)(a); and for

all a′ 6∈ γj we have τ̃(s̃0, (s̃0, i0), s̃1, (s̃1, i1), . . . , s̃k, (s̃k, j))(a′) =
τ(s0, s1, . . . , sk)(a′).

2. Given a strategy π̃ in the game G̃r the strategy π = t(π̃) in the game
G is as follows:

π(s0, s1, . . . , sk) =

{
π̃(s̃0, s̃1, . . . , s̃k) if ∀i. 0 ≤ i ≤ k.si ∈ VC(r)
π′ otherwise; where π′ is an arbitrary strategy

Fact 1. It follows from the construction of the game G̃r that for all strategies
τ ∈ Γ`

ε(Φ), for all states s̃ ∈ S̃r \ { w2 }, for all strategies π̃ for player 2 we
have Preτ ,eπ

es (Reach({ w2 })) ≤ ε; where τ̃ = t̃(τ).

Lemma 4 Let τε ∈ Γ`
ε(Φ)∩ΓQ

ε (Φ), for 0 < 2ε < r. For all strategies π̃ ∈ Π̃,
for all states s̃ ∈ S̃r we have

Preτε,eπ
es (Φ) ≥ r − 2ε,

where τ̃ε = t̃(τε).
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Proof. Consider a strategy π̃ in the game G̃r and let π = t(π̃). Since τε

is an ε-optimal strategy and 〈〈1〉〉val (Φ)(s) = r, we have Prτε,π
s (Φ) ≥ r − ε.

Thus we have

r − ε ≤ Prτε,π
s (Φ) = Prτε,π

s (Φ ∩ Safe(VC(r))
+ Prτε,π

s (Φ | Reach(VC>r ∪VC<r)) · Prτε,π
s (Reach(VC>r ∪VC<r))

≤ Prτε,π
s (Φ ∩ Safe(VC(r)) + Prτε,π

s (Reach(VC>r ∪VC<r))

It follows from the construction of the game G̃r that we have

Prτε,π
s (Φ ∩ Safe(VC(r)) = Preτε,eπ

es (Φ ∩ Safe(S̃r)).

Since τε is a locally ε-optimal strategy, from Fact 1 and the construction of
the game G̃r we have

Preτε,eπ
es (Reach({w1}) ≥ Preτε,eπ

es (Reach({w1, w2}))−ε = Prτε,π
s (Reach(VC>r∪VC<r))−ε.

Since w1 is a winning absorbing state for player 1 we have

Preτε,eπ
es (Φ) = Preτε,eπ

es (Φ ∩ Safe(S̃r))
+ Preτε,eπ

es (Φ | Reach({ w1 })) · Preτε,eπ
es (Reach({ w1 }))

= Preτε,eπ
es (Φ ∩ Safe(S̃r)) + Preτε,eπ

es (Reach({ w1 }))
≥ Prτε,π

s (Φ ∩ Safe(VC(r)) + Prτε,π
s (Reach(VC>r ∪VC<r))− ε ≥ r − 2ε.

The Lemma follows.

Lemma 5 If U>0 6= ∅, then U1 6= ∅.

Proof. The argument is similar to the proof of Theorem 1. Assume towards
contradiction that U1 = ∅, U>0 6= ∅, and let s̃ ∈ U>0. Fix 0 < 3ε <
min{ r, 〈〈2〉〉val (Φ)(s̃) }. Let π̃ε be an ε-optimal strategy for player 2. We
construct a sequence of strategies τ̂ i

ε for player 1 as follows:

1. Let τ0
ε ∈ Γ`

ε(Φ) ∩ Γε(Φ), i.e., τ0
ε is an ε-optimal and locally ε-optimal

strategy in the game G (the fact that Γ`
ε(Φ) ∩ Γε(Φ) 6= ∅ follows from

Lemma 3). Then τ̂0
ε = τ̃0

ε = t̃(τ0
ε ).

2. The strategy τ̂ i+1
ε is inductively defined as follows:

τ̂ i+1
ε (〈s̃0, s̃1, . . . , s̃k〉) =



τ̂ i
ε(〈s̃0, s̃1, . . . , s̃k〉) Preτ i

ε,eπε

es (Φ | 〈s̃0, s̃1, . . . , s̃k〉) ≥ ε

τ̃ ′ε(〈s̃0, s̃1, . . . , s̃k〉) Preτ i
ε,eπε

es (Φ | 〈s̃0, s̃1, . . . , s̃k〉) < ε,

where τ ′ε is an ε-optimal and
locally ε-optimal strategy
from sk in G and τ̃ ′ε = t̃(τ ′ε).
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Let τ̂∞ε = limi→∞ τ̂ i
ε. Since 3ε < r (i.e., r−2ε > ε), it follows from Lemma 4

and arguments similar to Theorem 1, that for all histories 〈s0, s1, s2, . . . , sn〉,
we have Prbτ∞ε ,eπε

es (Φ | 〈s0, s1, s2, . . . , sn〉) ≥ ε. It follows from arguments
similar to Theorem 1 that we have Prbτ∞ε ,eπε

es (Φ | Fn) → 1 almost-surely, i.e.,
Prbτ∞ε ,eπε

es (Φ | Fn) → 0 almost-surely. Hence we have a contradiction that
s̃ ∈ U>0.

Lemma 6 For every r > 0, for every state s ∈ VC(r), the state s̃ is a limit-
sure winning state in the game G̃r for player 1, i.e., from state s̃ player 1
can win with probability arbitrarily close to 1.

Proof. To prove the desired result we show that U>0 = ∅. It follows from
Lemma 5 that it suffices to show that U1 = ∅. Fix 0 < 2ε < r, and let τε be
a locally ε-optimal and ε-optimal strategy in G, i.e., τε ∈ Γ`

ε(Φ)∩Γε(Φ) (the
fact that Γ`

ε(Φ) ∩ Γε(Φ) 6= ∅ follows from Lemma 3). Assume for the sake
of contradiction that U1 is non-empty. Let s̃ ∈ U1 and π̃ε be an ε-optimal
strategy for player 2 from s̃. We construct a strategy τ̃ε for player 1 in G̃r

and a strategy πε for player 2 in G as follows:

1. Strategy τ̃ε in the game G̃r is defined as τ̃ε = t̃(τε).

2. Strategy πε in the game G is defined as πε = t(π̃ε).

Since τε is locally ε-optimal, we have Preτε,eπε
s (Reach({ w2 })) ≤ ε. Since

〈〈2〉〉val (Φ)(s̃) = 1, and π̃ε is an ε-optimal strategy we have that Preτε,eπε
s (Φ ∩

Safe(S̃r \ { w1, w2 })) ≥ 1− ε. Hence it follows that

Prτε,πε
s (Φ) ≥ Prτε,πε

s (Φ ∩ Safe(VC(r))) ≥ 1− ε.

Hence we have Prτε,πε
s (Φ) ≤ ε. Since τε is an ε-optimal strategy and r > 2ε,

and 〈〈1〉〉val (Φ)(s) = r, we get a contradiction. Thus the desired result
follows.

Definition 4 (Value-class qualitative ε-optimal strategy) For an ob-
jective Φ, for ε > 0, a strategy τε is a value-class qualitative ε-optimal strat-
egy for a value-class VC(r), with 0 < r < 1, if

1. τε is locally ε-optimal.

2. for all strategies π ∈ Π, for all states s, for all his-
tories 〈s0, s1, s2, . . . , sk〉 such that sk ∈ VC(r), Prτε,π

s (Φ |
〈s0, s1, s2, . . . , sk〉,Safe(VC(r))) ≥ 1− ε.
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A strategy τε is value-class qualitative ε-optimal for objective Φ if it is value-
class qualitative ε-optimal for all value classes VC(r), for 0 < r < 1.
Value-class qualitative ε-optimal strategies for player 2 are defined similarly.
We denote by ΓQ

ε (Φ) and ΠQ
ε (Φ) the set of value-class qualitative ε-optimal

strategies for objectives Φ and Φ for player 1 and player 2, respectively.

Observe that the ε-limit-sure winning strategies in the game G̃r satisfies the
requirement for value-class qualitative ε-optimal strategies for value-class
VC(r). The existence of value-class qualitative ε-optimal strategies for tail
objectives follows from Lemma 6.

Lemma 7 For all tail objectives Φ, for all ε > 0, ΓQ
ε (Φ) 6= ∅ and ΠQ

ε (Φ) 6=
∅.

We denote by W1 = { s | 〈〈1〉〉val (Φ)(s) = 1 } and W2 = { s | 〈〈2〉〉val (Φ)(s) =
1 }, the set of states where player 1 and player 2 have values 1, respectively.

Lemma 8 Let τε be a locally ε-optimal strategy. For all strategies π
for player 2, if Prτε,π

s (Reach(W1 ∪ W2)) = 1, then Prτε,π
s (Reach(W1)) ≥

〈〈1〉〉val (Φ)(s)− ε.

Proof. The results follows from the fact that the sequence (〈〈1〉〉val (Φ)(Θi))i
is a sub-martingale under τε and π.
The following Lemma shows that the value-class qualitative ε-optimal strate-
gies for different value classes can be “stitched” or composed together to
produce an ε-optimal strategy. The key argument is as follows: if a play
stays in S \(W1∪W2) then by properties of value-class qualitative ε-optimal
strategies player 1 wins with probability 1; else the play reaches W1 ∪ W2

and then ε-optimality is guaranteed by local ε-optimality and Lemma 8.
The details of the argument is similar to Lemma 14 in [1].

Lemma 9 (Stitching Lemma) Let τε be a value-class qualitative ε-
optimal strategy and τε is an ε-optimal strategy for all states in W1. Then
τε is an ε-optimal strategy.

Lemma 7, Lemma 9 and the characterization of value-class qualitative ε-
optimal strategies as ε-limit-sure winning strategies in sub-games and locally
ε-optimal strategies establishes the following Theorem. The Theorem states
that witnesses for ε-optimal strategies can be constructed from witnesses of
ε-limit-sure winning strategies in sub-games and locally ε-optimal strategies.
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Theorem 2 (Limit-sure to ε-optimality) For all tail objectives Φ, for
ε > 0, let τε be a strategy such that

1. τε is locally ε-optimal, i.e., τε ∈ Γ`
ε(Φ);

2. for all value-classes VC(r), with r > 0, for all strategies π̃ in G̃r, for
all states s̃ ∈ S̃r, we have Preτε,eπ

es (Φ) ≥ 1− ε, where τ̃ε = t̃(τε).

Then τε is ε-optimal, i.e., τε ∈ Γε(Φ).

Zero-sum tail games and nonzero-sum reachability games. Given a
gamegraph G with a tail objective Φ consider the gamegraph GA such that
every state s ∈ W1∪W2 is transformed to an absorbing state and the states
in W1 are winning for player 1 and the states in W2 are winning for player 2,
i.e., 〈〈1〉〉val (Φ)(s) = 1 for s ∈ W1 and 〈〈2〉〉val (Φ)(s) = 1 for s ∈ W2. Note
that for every state s the value for state s in G and GA are the same. In
the following Lemma we show that there exist ε-optimal strategies which if
the players follow, then the play reaches W1 ∪ W2 with probability 1. We
then extend the result to relate the values of game with tail objectives to
equilibrium values of nonzero-sum games with simple reachability objectives.

Lemma 10 In the gamegraph GA, let (τ, π) ∈ ΓQ
ε (Φ) × ΠQ

ε (Φ), for suffi-
ciently small ε. Then for all states s we have Prτ,π

s (Reach(W1 ∪W2)) = 1.

Proof. We first prove that there exists constant η > 0, such that for all
histories 〈s0, s1, s2, . . . , sk〉,

Prτ,π
s (Reach(W1 ∪W2) | 〈s0, s1, s2, . . . , sk〉) ≥ η > 0.

For all histories 〈s0, s1, s2, . . . , sk〉, such that sk ∈ VC(r) we must have
Prτ,π

s (Safe(VC(r)) | 〈s0, s1, s2 . . . , sk〉) = 0. If Prτ,π
s (Safe(VC(r)) |

〈s0, s1, s2, . . . , sk〉) > 0, then by properties of value-class qualitative ε-
optimal strategies we have

Prτ,π
s (Φ | 〈s0, s1, s2, . . . , sk〉,Safe(VC(r))) ≥ 1− ε,

Prτ,π
s (Φ | 〈s0, s1, s2, . . . , sk〉,Safe(VC(r))) ≥ 1− ε;

which is a contradiction for ε < 1/2. Hence for all histories 〈s0, s1, s2, . . . , sk〉
such that sk ∈ VC(r) we have Prτ,π

s (Safe(VC(r)) | 〈s0, s1, s2, . . . , sk〉) = 0.
Since value-class qualitative ε-optimal strategies are ε-locally optimal, it
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follows that there exists constant η′ > 0, such that for all histories
〈s0, s1, s2, . . . , sk〉, if sk ∈ VC(r), then we have

Prτ,π
s (Reach(VC>r) | 〈s0, s1, s2, . . . , sk〉) ≥ η′ > 0,

i.e., the play goes to a greater value class with positive probability η′. Since
the number of value classes are finite it follows that there exists constant
η > 0 such that

Prτ,π
s (Reach(W1 ∪W2) | 〈s0, s1, s2, . . . , sk〉) ≥ η > 0. (1)

Since all states in W1 ∪W2 are absorbing states it follows that Reach(W1 ∪
W2) is a tail objective. Hence by Lemma 2 we have Prτ,π

s (Reach(W1 ∪W2) |
Fn) → {0, 1} almost-surely. It follows from (1) that Prτ,π

s (Reach(W1∪W2) |
Fn) → 1 almost-surely. The desired result follows.
The above Lemma states that if the players play value-class qualitative ε-
optimal strategies, for sufficiently small ε, then the play reaches W1 ∪ W2

with probability 1. Since value-class qualitative ε-optimal strategies are
ε-optimal strategies (Lemma 9) the following lemma is immediate.

Lemma 11 Given a gamegraph G with objectives Φ for player 1 and Φ for
player 2 we have

lim
ε→0

sup
τ∈Γ

inf
π∈ΠQ

ε (Φ)
Prτ,π

s (Reach(W1)) = 〈〈1〉〉val (Φ)(s);

lim
ε→0

sup
π∈Π

inf
τ∈ΓQ

ε (Φ)
Prτ,π

s (Reach(W2)) = 〈〈2〉〉val (Φ)(s).

Consider a non-zero sum reachability game GR such that the objectives
of both players are reachability objectives: the objective for player 1 is
Reach(W1) and the objective for player 2 is Reach(W2). Note that the
game GR is not zero-sum in the following sense: there are infinite paths
ω such that ω 6∈ Reach(W1) and ω 6∈ Reach(W2) and each player gets a
payoff 0 for the path ω. We define ε-Nash equilibrium of the game GR and
relate some special ε-Nash equilibrium of GR with the values of G.

Definition 5 (ε-Nash equilibrium in GR) A strategy profile (τ∗, π∗) ∈
Γ × Π is an ε-Nash equilibrium at state s if the following two conditions
hold:

Prτ∗,π∗
s (Reach(W1)) ≥ sup

τ∈Γ
Prτ,π∗

s (Reach(W1))− ε

Prτ∗,π∗
s (Reach(W2)) ≥ sup

π∈Π
Prτ

∗,π
s (Reach(W2))− ε
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Theorem 3 (Nash equilibrium of reachability game GR) The fol-
lowing assertion holds for the game GR.

1. For all ε > 0, there is an ε-Nash equilibrium (τ∗ε , π∗ε) ∈ ΓQ
ε (Φ)×ΠQ

ε (Φ)
such that for all states s we have

lim
ε→0

Prτ
∗
ε ,π∗ε

s (Reach(W1)) = 〈〈1〉〉val (Φ)(s)

lim
ε→0

Prτ∗ε ,π∗ε
s (Reach(W2)) = 〈〈2〉〉val (Φ)(s).

Proof. It follows from Lemma 11.
Note that in case of MDPs the strategy for player 2 is trivial, i.e., player 2
has only one strategy. Hence in context of MDPs we drop the strategy π of
player 2. A specialization of Theorem 3 in case of MDPs yields the following
Theorem.

Theorem 4 For all MDPs GM , for all tail-objectives Φ, we have

〈〈1〉〉val (Φ)(s) = sup
τ∈Γ

Prτ
s(Reach(W1)) = 〈〈1〉〉val (Reach(W1))(s)

Since the values in MDPs with reachability objectives can be computed
in polynomial time (by linear-programming) [3, 9], our result presents a
polytime reduction of quantitative analysis of tail objectives in MDPs to
qualitative analysis.
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